Salt melt synthesis of ceramics, semiconductors and carbon nanostructures.
نویسندگان
چکیده
Materials synthesis in the liquid phase, or wet-chemical synthesis, utilizes a solution medium in which the target materials are generated from a series of chemical and physical transformations. Although this route is central in organic chemistry, for materials synthesis the low operational temperature range of the solvent (usually below 200 °C, in extreme 350 °C) is a serious restriction. Here, salt melt synthesis (SMS) which employs a molten inorganic salt as the medium emerges as an important complementary route to conventional liquid phase synthesis. Depending on the nature of the salt, the operational temperature ranges from near 100 °C to over 1000 °C, thus allowing the access to a broad range of inorganic crystalline materials and carbons. The recent progress in SMS of inorganic materials, including oxide ceramic powders, semiconductors and carbon nanostructures, is reviewed here. We will introduce in general the range of accessible materials by SMS from oxides to non-oxides, and discuss in detail based on selected examples the mechanisms of structural evolution and the influence of synthetic conditions for certain materials. In the later sections we also present the recent developments in SMS for the synthesis of organic solids: covalent frameworks and polymeric semiconductors. Throughout this review, special emphasis is placed on materials with nanostructures generated by SMS, and the possible modulation of materials structures at the nanoscale in the salt melt. The review is finalized with the summary of the current achievements and problems, and suggestions for potential future directions in SMS.
منابع مشابه
Electro-Synthesis of Cu-Nb Nanocomposites; Toward Novel Alloying of Immiscible Bimetals
Immiscible metals due to their inherent specs are insoluble over the steady state. Developing an innovative approach to this issue would be fascinating and challenge the overriding rules. Herein, we proffer the principles of synthesis of Cu-Nb nanocomposites using electrochemical deoxidation route. This method consists of the cathodic electrolysis of the nanoparticles Cu-Nb2O5 through the...
متن کاملInvestigation of resistive switching in anodized titanium dioxide thin films
In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications. Increasing anodizing duration will increase nanotube lengths which itself c...
متن کاملCrystallization Kinetics and Characterization of Nanostructure Mica Glass-Ceramics with Optical Transparency
Transparent glasses in a system of Li2O-MgO-SiO2-Al2O3-Fchemical constituents were prepared by melt quenching method. In the fabrication of nanocrystal glass-ceramics, controlled nucleation and subsequent crystal growth were necessary to avoid loss of transparency. It was therefore important to understand thermal properties and crystallization kinetic...
متن کاملPreparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon
In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...
متن کاملSynthesis of carbon nanotubes with and without catalyst particles
The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical Society reviews
دوره 42 21 شماره
صفحات -
تاریخ انتشار 2013